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ABSTRACT 
This paper reviews some of the stochastic methods used in applied hydrology over the past thirty years, the period during which the power 

and availability of computers grew rapidly, and methods of time-series modelling and simulation came into use which had previously been compu-
tationally prohibitive. Where stochastic methods are used to estimate the frequencies with which extreme hydrological events (floods, droughts) will 
occur in the future, these methods assume that hydrological processes are stationary, so that rainfall and runoff records from past years can be 
used to estimate how often extreme events will occur in the future. But where there are changes in land use or climate, hydrological processes also 
change, and the past may not be a good guide to the future. In South America, there have been extensive changes in land use during the last 
thirty years, and there is increasing evidence that climate is also changing. Standard hydrological procedures, such as estimating annual events 
with T-year return period, and regionalization of annual floods, then become inappropriate. The paper argues that under conditions of climate 
and land-use change, good assessment of the future frequency of extremes must await better knowledge of the physical processes that determine the 
behaviour of atmosphere and the oceans. 
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WHAT IS “STOCHASTIC HYDROLOGY”? 

A first definition of stochastic hydrology is that it is a 
set of procedures for computing quantities of hydrological 
interest, through analysis of a hydrological record (of rainfall, 
discharge, lake levels, volumetric water content of soil at a 
given depth...), the values of which are regarded as observa-
tions of a random variable: that is, a variable subject to prob-
abilistic laws. This definition can be extended in at least two 
ways. First, it can be extended in a multivariate sense, in 
which relationships are established between two or more 
random variables (such as rainfall and runoff from a drain-
age basin; or daily rainfall and depths of water stored in 
successive 10-cm layers of soil down to rooting depth). 
Second, it can be extended to include a spatial dimension, in 
which time-sequences of observations are recorded at two 
or more points that are spatially separated (for example 
sequences of daily rainfall at each of a number of rain-gauges 
within a drainage basin). Whether we are dealing with obser-
vations of a single hydrological variable, or of several, the 
procedures of stochastic hydrology result in the calculation 
of quantities that are subject to uncertainty because they are 
derived from calculations using random variables. 

For the purposes of this paper, no distinction will be 
drawn between the terms “stochastic hydrology” and “sta-
tistical hydrology”. The words “stochastic” and “statistical” 
are sometimes used to distinguish between statistical 
methods applied to hydrological analyses in which values 
are considered to be serially dependent, and serially inde-
pendent, respectively. However this distinction is unneces-
sary; both terms apply to the analysis of hydrological data 

in which values are regarded as sequences of observations 
of random variables. 

UNCERTAINTY AND RISK 

There is some confusion in the hydrological literature 
concerning the terms uncertainty and risk. Uncertainty is a 
characteristic of events; the event “rainfall in the next month 
will exceed 100 mm” (denoted by “A”) is an uncertain 
event, the measure of its uncertainty being the probability 
that the event will occur. The probability can be inter-
preted either in frequentist or subjective terms; from the fre-
quentist viewpoint, the probability of the event A can be 
estimated from the number of times in the past that rain-
fall in the month considered has exceeded 100 mm. Prob-
abilities must be estimated subjectively where no records 
exist from which to estimate them; an example might be 
the probability of the event B: “nuclear fusion will provide 
cheaper energy than fossil fuels within the next five years”. 
A number of texts (e. g., Lindley, 1985) shows how subjec-
tive probabilities can be quantified. 

Risk, on the other hand, is a characteristic not of 
events, but of decisions that must be made in the face of 
uncertainty. As an example, consider a farmer who is 
thinking about whether to buy irrigation equipment. If the 
rainfall in the next growing season is less than X mm – an 
uncertain event, with its uncertainty measured by its (fre-
quentist) probability p – purchase of the irrigation equip-
ment will be justified; however if the rainfall in the growing 
season is greater than X mm – also an uncertain event, 
with probability (1-p) – he will not need to irrigate and the 
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equipment, if purchased, will stand idle and depreciate. On 
the other hand, if he does not purchase the equipment and 
the rainfall is less than X mm, his yields will be depressed 
and his income reduced. The farmer’s decisions, the uncer-
tain events that affect them, and the consequent losses L i j, 
can be expressed as a 2 × 2 table: 

 Uncertain event: 
 Rain < X Rain > X 

Probabilities: p 1 – p 

Decisions:   

d1: Purchase equipment L11 L12 
d2: Do not purchase equipment L21 L22 

The risk associated with the farmer’s decision d 1 is 
the expected loss that would result from taking it, namely 
p.L11 + (1-p).L12. Similarly the risk associated with the 
decision d2 is p.L21 + (1-p).L22. The farmer, as a logical 
person, will choose whichever of the two decisions d 1 
and d2 has smaller risk. Risk is therefore calculated from 
the uncertainties (probabilities) which in this simple ex-
ample have the values p and 1 – p, together with loses 
(or, more generally, utilities). If L11 = 0 so that the farmer 
loses nothing if he buys the equipment when rainfall is 
insufficient, then the risk of the decision d1 has the simple 
form (1-p).L12, or: 

risk = uncertainty × loss. 

In general, there are more than two possible deci-
sions, and many more than two uncertain events that may 
affect the outcome of each decision. But the principle 
remains that the uncertainties in the events are measured by 
their probabilities, whilst the risk associated with each 
possible decision is the sum of the products of losses with 
probabilities. 

EXAMPLES OF STOCHASTIC METHODS 
USED IN HYDROLOGY 

Over the past quarter century, stochastic methods 
have been widely used in many contexts. Two main types 
of application can be distinguished. The first is concerned 
with making statements about how frequently extreme 
events (flood discharges in rivers, droughts, rainfall of high 
intensity, ...) will occur in the future. The second main type 
of application is concerned with estimating the future 
values of a hydrological variable, such as discharge, given 
the values observed up to the present time. These two 
main areas of application are sometimes described as predic-
tion and forecasting respectively. The following sections give 
some examples (by no means exhaustive) of applications in 
these two areas. 

Examples of stochastic methods for prediction 

i. Predictions of how frequently an annual maximum 
daily mean discharge (“annual flood”) of specified 
magnitude will occur in the future. An observed se-
quence of annual floods is assumed to be serially in-
dependent, and the method consists of selecting and 
fitting an appropriate probability distribution and cal-
culating its quantiles. It is also possible to use non-
parametric (kernel estimation) procedures to fit the 
probability distribution. The problem is commonly 
presented in the inverse sense: given the probability 
of occurrence (return period) of the annual flood, 
calculate its magnitude. Calculations of this kind form 
an essential part of the design of hydraulic structures, 
and urban planning in flood-prone areas. There is an 
enormous literature concerned with the selection of 
an appropriate probability distribution, how to esti-
mate its parameters, and the properties of different 
estimators (e. g., Stedinger et al, 1992). 

ii. Predictions of how frequently a minimum mean dis-
charge, averaged over a given time period, will occur 
in the future: for example, the annual minimum of 
the mean discharge in seven consecutive days. The 
procedure is essentially the same as in 3.1.1, although 
the assumption of serial independence of low flows 
in successive years may be more questionable because 
periods of drought may extend from one hydrologi-
cal year into the next. The predictions are used in the 
planning of water resources, to ensure that water de-
mands are met with a frequency of failure that is ac-
ceptably low. 

iii. Predictions of how frequently rainfall with a given in-
tensity and duration will occur in future. For a given 
duration of rainfall (such as 10 minutes, or one 
hour....), annual maximum intensities for this duration 
are calculated from the rainfall record, an appropriate 
probability distribution is fitted, and its quantiles calcu-
lated. The procedure is repeated for several specified 
durations, and the results may be expressed in the 
form of intensity-duration-frequency (IDF) curves. 
The uncertainties in rainfall intensities predicted from 
IDF curves can be quantified, although problems arise 
because predicted extremes are dependent (Buishand, 
1993). These curves play an important part in urban 
planning and drainage network design. 

iv. Predicting the frequency of occurrence of runs of 
observations with a specified characteristic (such as 
days without rain; monthly runoff less than half the 
monthly average;...). Here, some form of serial de-
pendence between successive observations is as-
sumed, an appropriate time-series model is selected 
and fitted, and the model is used to simulate many 
sequences of the hydrological variable. The ratio of 
the number r of such sequences in which the run oc-
curs, divided by the total number N of sequences 
simulated, gives the desired estimate of the frequency 
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of occurrence. These predictions may be used, for 
example, to determine optimum planting dates for 
crops in semi-arid areas (Stern and Coe, 1984). There 
is an extensive literature on time-series modelling for 
hydrological application (e. g., Salas, 1992). Where 
sequences of daily rainfall have been modelled by 
stochastic methods, discrete-state Markov chains 
have commonly been used to model rainfall occur-
rence, with the transition probabilities allowed to vary 
from day to day throughout the year; rainfall depths 
registered on wet days have been modelled using ex-
ponential or gamma distributions (Coe and Stern, 
1982; Stern and Coe, 1984). McCullagh and Nelder 
(1989) have shown how such models can be ex-
tended to look for trends in patterns of daily rainfall. 

v. Stochastic models of rainfall for time-intervals 
shorter than one day have been developed by Rodri-
guez-Iturbe and others (Rodriguez-Iturbe et al., 1984; 
1987a, 1987b; Khaliq and Cunnane, 1996) and have 
been used to disaggregate long records of daily rain-
fall into rainfalls over shorter time periods, for use in 
rainfall intensity studies (Glasbey et al., 1995). The 
models have a complex structure which require as-
sumptions about the time intervals between rainfall 
events, about the number of storm cells occurring 
within each rainfall event, about the time-intervals 
separating cell arrivals at the measuring site, about the 
time-duration of storm cells, and about their inten-
sity. The models have been fitted to short periods of 
rainfall-recorder data at Pelotas, RS, and have been 
used to disaggregate longer records of daily rainfall at 
a site nearby; however the gain in information ap-
peared to be quite small (Damé, 2001). More promis-
ing results were obtained under South African condi-
tions (Smithers et al., 2002). 

Examples of stochastic methods for forecasting 

i. Estimation of future mean monthly flow, given the 
sequence of mean monthly flow observed up to the 
present. An important feature of forecasts given by 
stochastic models is that measures of their uncer-
tainty can also be obtained in the form of confidence 
limits. Models used to forecast monthly flow may be 
multiple linear regressions on harmonic terms as in-
dependent variables, or ARMA time-series models of 
the classical Box-Jenkins type which, for monthly 
flows Qt are given by 

φ(B)Φ(B12)∇d ∇D Qt = θ (B) Θ(B12) at 

where φ(.), Φ(.), θ(.), Θ(.) are polynomials of order p, 
P, q, Q in the backwards operators B and B12 (such 
that BQt = Qt –1 and B12 Qt = Qt – 12), ∇ is a differ-
encing operator defined by ∇ = 1 – B, and at is a 
random “shock” with zero mean and variance σ2a. 

The powers d, D of ∇ are integers. However the 
forecasts may have large variances in cases where ba-
sin response to rainfall is very rapid, and where sea-
sonal variation in monthly flow is not well-defined. 

ii. Estimation of future mean monthly flow, given se-
quences both of mean monthly flow and mean 
monthly rainfall averaged over the drainage area. 
Models of the Box-Jenkins transfer-function type can 
be fitted and used to forecast future monthly flows. 
With monthly rainfall and runoff denoted by Pt, Qt in 
month t, the transfer model involving seasonality can 
be written 

δ(B)∆(B12)∇d ∇D Qt = ω (B) Ω(B12)B12 Pt 

where δ(.), ∆(.), ω(.) and Ω(.) are polynomials in B 
and B12. However the forecasts are likely to have 
large variances for lead-times greater than the re-
sponse time of the drainage basin. Transfer function 
models can also be used with several input variables, 
such as rainfall and upstream flows, or rainfall in sev-
eral sub-regions of the drainage basin. 

iii. Stochastic models of more complicated structure 
have been developed for systems, such as very large 
river basins, with long memory, and these long-
memory models can be used for forecasting. They 
have been shown to give more accurate forecasts (i. 
e., forecasts with narrower confidence intervals) than 
ARMA models fitted to the same data. The models 
may contain causative variables, such as precipitation, 
as independent or explanatory variables (Beran, 
1994). However, the use of such long-memory mod-
els for forecasting future annual runoff is likely to be 
limited because of the limited records of annual run-
off available to fit them. At the monthly time-scale, 
deviations of monthly runoff from long-term 
monthly means show some evidence of long-memory 
behaviour, so that for large basins forecasts of 
monthly runoff by this approach may be a possibility. 
Evidence for long memory can be evaluated by vari-
ous procedures (Beran, 1994) but one of the simplest 
is to break the data sequence into sub-series of equal 
length N, calculate the variance V amongst the sub-
series means, and plot log(V) against log(N) for dif-
ferent values of N. If the data sequence has long 
memory, the slope of a line fitted to points in this 
plot will have slope greater (less negative) than -1, the 
value corresponding to short-memory behaviour. 
Figures 1 and 2 show plots obtained from deviations 
about monthly mean flows on the Rio Paraná at Cor-
rientes, and monthly mean water levels for the Alto 
Paraguai at Ladário. Both plots show evidence of 
long memory. 
There is a physical argument which justifies the use 
of these models. Granger (1980) showed that when a 
number of short-memory processes are aggregated, 
such as lag-one auto-regressive models of the form 
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Figure 1. Plot of log(variance) against log(sample size), 
calculated from sequence of deviations from the long-term 
monthly means, for Rio Paraná at Corrientes, 1904-99. If the 
sequence had only short-term memory, the slope of the plot 
should be close to the 45o line with slope -1 (shown as 
broken line). The least squares line has slope –0.560 ± 0.039. 

Qt (j) = α j Q t - 1 (j) + ε t (j) for j = 1, 2,... and with 
the α j constant and such that –1 < αj < 1, the result 
is a long memory process. Now consider the re-
sponse of a large drainage basin, regarded as an ag-
gregation of a number of smaller sub-basins; after 
heavy rain when soil is saturated, each sub-basin will 
behave like a linear system, and the discrete form of a 
single linear reservoir with input Pt shows that the re-
sponse Qt satisfies an equation analogous to a lag-one 
auto-regression. Thus if sub-basins within a large 
drainage basin behave like single linear reservoirs 
when soil is saturated, the basin as a whole will show 
long-memory behaviour. A common model for long-
memory behaviour is the auto-regressive model 

φ(B)∇d Qt = θ (B) at 

in which the power d is no longer an integer but sat-
isfies –1/2 < d < 1/2. A model of this form is a frac-
tional ARIMA (p,d,q) model. 

iv. Forecasting of future values of residuals obtained af-
ter fitting a lumped or distributed (“deterministic”) 
rainfall-runoff model. The applications 3.2.1 to 3.2.3 
refer to stochastic flow-forecasting models which do 
not include descriptions of how vegetation and soil 
interact with rainfall to produce runoff and evapora-
tion, but these descriptions are a fundamental feature 
of both lumped and distributed rainfall-runoff mod-
els. However when fitted to hydrological data, a se-
quence of residuals measuring lack of fit is produced 
which commonly contains a residue of information 
that is not easily extracted by modifying the rainfall-
runoff model. Stochastic models have been fitted to 
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Figure 2. Plot of log(variance) against log(sample size), 
calculated from sequence of deviations from the long-term 
monthly means, for Alto Paraguai at Ladário, 1900-95. If the 
sequence had only short-term memory, the slope of the plot 
should be close to the 45o line with slope -1 (shown as broken 
line). The least squares line has slope –0.4085 ± 0.0471. 

the sequence of residuals to produce forecasts of re-
siduals that serve to correct the forecasts of future 
flow obtained from the deterministic model. The 
ideal result from fitting both a deterministic model, 
followed by stochastic modelling of its residuals, 
would be a sequence of secondary residuals that is a 
completely random sequence (or white noise). There 
remains a difficulty however: whilst confidence inter-
vals can be obtained for forecasts of future residuals 
given by the deterministic model, what the user really 
requires is confidence interval for forecast given by 
the deterministic model itself. 

v. Kriging is a widely used stochastic procedure for opti-
mally interpolating a variable (Y(s) say) that varies spa-
tially over the region defined by co-ordinates s. Co-
kriging is an extension of the technique in which in-
formation on one or more additional variables X(s), 
Z(s), ... is used to improve interpolation of Y(s). A par-
ticular case of co-kriging occurs where Y(s) also de-
pends upon time, Y(s) = Y(s, t i), and X(s), Z(s), ... are 
modified to become Y(s, t i - 1), Y(s, t i - 2), ... Thus co-
kriging can be used to produce forecasts of the space-
time process Y(s, t i + 1), Y(s, t i + 2), ... (Cressie, 1993). 

THE CRITICAL ASSUMPTION OF 
STATIONARITY 

If the modelling objective is to forecast future values 
of a hydrological variable, together with confidence limits 
for forecasts, then non-stationarity in records presents no 
particular difficulty. Stochastic models of the Box-Jenkins 
ARIMA type, in which ARMA models are fitted to a new 
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variable obtained by differencing the variable of interest an 
appropriate number of times, still provide forecasts. The 
same is true where a stochastic model is fitted to residuals 
calculated from a deterministic model (see the example 
3.2.4 above). 

However, where the modelling objective is to pre-
dict the frequencies of extreme events (or equivalently, 
the inverse problem, of predicting the magnitude of a 
hydrological variable that will occur with a specified re-
turn period, say 100 years), the difficulties are very much 
greater. Modelling for the purpose of predicting frequen-
cies depends critically on the assumption that past hydro-
logical behaviour will continue into the indefinite future. 
However, the assumption of stationarity may well be 
inappropriate (a) in river basins where land use is chang-
ing from forest to annual arable crops, or where urban 
growth is rapid; (b) where climate is changing. Figure 3 
shows how annual floods are changing at two sites on the 
Rio Jacuí, Rio Grande do Sul; clearly it would be inap-
propriate to extrapolate past hydrological behaviour into 
the future at these sites. It is not clear how far the non-
stationarity in annual flood record is a consequence of 
urbanisation, or of deforestation, or indeed of climate 
change; a careful statistical analysis of rainfall records 
would reveal whether it is also a contributing factor. The 
problem becomes marginally simpler if climate change 
can be ruled out; if (a) records are available that show 
how deforestation and impermeable urbanised areas have 
increased over time, and (b) upper limits to the spatial 
extent of deforestation and urbanisation can be reasona-
bly specified, (c) it can be assumed that the flood regime 
will tend towards a steady state after these limits are 
reached, then methods explored by Clarke (2002a, 2002b, 
2002c) for the analysis of non-stationary hydrological 
data with Extreme Value distributions can be used to 
predict frequencies of occurrence of extreme events after 
the steady state condition is reached. 

The difficulty is much greater still where climate is 
changing. The report “Climate Change 2001: Impacts, 
Adaptation and Vulnerability” by the Intergovernmental 
Panel for Climate Change (IPCC) warns of climate change 
over the next century, envisaging “changes in the variabil-
ity of climate, and changes in the frequency and intensity 
of some climate phenomena.” Such forecasts, now being 
made with ever-increasing confidence, imply that the statis-
tical stationarity necessary for many hydrologic analyses 
can no longer be safely assumed, and the spatial and tem-
poral availability of water resources must be expected to 
change as and when regional climate changes. This is of 
crucial importance to a country like Brazil, in which more 
than 90% of its energy is provided by hydropower. Marked 
changes since 1970 of flow in rivers contributing to water 
generating hydropower from Itaipu have been reported by 
Müller et al. (1998); relative to mean flows before 1970, 
flows after 1970 in the drainage basins Paranaíba, Grande, 
Tietê, Paranapanema and Incremental of Itaipu were larger 
by 8, 18, 34, 45 and 44 per cent respectively. Smaller in-
creases in rainfall were also detected in the same basins, of 
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Figure 3. Records of annual floods at sites 85140000: 
Passo Bela Vista and 85080000 Espumoso, 
on the Rio Jacuí, Rio Grande do Sul. 

magnitude 16, 17, 15, 16 and 8 per cent respectively. Thus 
annual flows in these rivers appear to show substantial 
non-stationarity, and estimation of annual flows with, say 
100-year return period is likely to give misleading results if 
calculated from the entire record of data both before and 
after 1970. There is additional and growing evidence of 
non-stationarity in various South American rivers; Genta et 
al. (1998) found that flows in the Paraná, Paraguay, Uru-
guay and Negro (Uruguay) were related to an index repre-
senting sea surface temperature anomalies in the eastern 
equatorial Pacific Ocean. In their analysis of annual 
streamflow in rivers in southeastern and south-central 
regions of the sub-continent, Robertson and Mechoso 
(1998) found significant evidence of a non-linear trend, a 
near-decadal component, and interannual peaks associated 
with ENSO (el Niño – Southern Oscillation) time-scales. 

It could be argued that as long as climate changes 
slowly and we limit our attention only to the prediction of 
extreme events that may occur over the next hundred years 
or so, existing methods based on the stationarity assump-
tion (such as fitting Gumbel or other Extreme Value dis-
tributions to annual flood records) will not be greatly in 
error, particularly since the planning horizon may be no 
longer than 50 years. This may or may not be justified. 
There has been a great deal of research to estimate rises in 
mean global temperature (e. g., Zwiers, 2002) over the 
period up to 2100, and the likely increases in mean global 
temperatures over shorter periods, notably for the decade 
2020-30, have now been reported and agreed independ-
ently by different authors (Stott and Kelleborough 2002; 
Knutti et al., 2002) who estimate increases in surface air 
temperature during this period of 0,3-1,3 K and 0,5-1,1 K 
respectively. Bearing in mind that these are global averages, 
regional values may well be larger; a greater degree of 
warming over land, and at higher latitudes, is expected, 
with possibly important consequences for regional rainfall 
and runoff. 
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Figure 4. Annual maximum, mean and minimum water 
levels at Ladario, Alto Paraguai, 1900-1995. 

Whilst the supposition of gradual climate change may 
or may not be valid, relatively abrupt changes in hydrologi-
cal regime have also been documented for some Brazilian 
rivers. Figure 4 show the record of annual maximum, 
mean, and minimum water levels at Ladario on the Alto 
Paraguai. The ten years or so between 1960-70 mark a 
period when water levels were very much lower than those 
before or after; indeed the whole structure of the time 
series appears to be different for these years as Tables 1 
and 2 show. In the case of the Pantanal, the changes in 
hydrological regime had very severe consequences for the 
region’s agriculture and society. 

THE INCOMPATIBILITY OF THE 
CONCEPT OF “RETURN PERIOD” 
WITH NON-STATIONARITY OF 
HYDROLOGICAL RECORDS 

Where changes in climate and/or land use are such 
that past hydrological behaviour of a river basin is no guide 
to future behaviour, the concept of return period becomes 
meaningless. When we say that the annual flood with re-
turn period 100 years is X m3 s-1 this means that over a 
very long sequence of years, an annual flood of magnitude 
X m3 s-1 or greater will occur, on average, with a frequency 
of once in a hundred years. But where non-stationarity 
exists, the idea of such “average” behaviour must be aban-
doned. What is the alternative? 

The point of departure must be that, for planning 
purposes, the period of interest is the period covering the 
next 20 to 50 years, and in particular the probability of 
extremes (whether of flood flow, of low flow, or of mean 
flow) occurring during that particular period. To emphasise 
this point, our assessment of the uncertainty in an extreme 
event ceases to be in terms of its frequency of occurrence 
over the very long term, but in terms of the probability of 
it occurring once or more times, over the period starting at 

Table 1. Mean maximum and mean minimum stages (cm), 
with standard errors of means, for periods 1900-60, 1961-70, 
and 1971-94: Ladário, Alto Paraguai. 

 Period 
1900-60 

Period 
1961-70 

Period 
1971-94 

Annual 
  maximum 

414.1 ± 18.01 280.1 ± 41.04 480.9 ± 30.24 

Annual 
  minimum 

89.67 ± 8.70 15.40 ± 21.65 143.8 ± 16.28 

Difference 324.4 ± 20.0 264.7 ± 46.4 337.1 ± 34.3 

the present and ending at the coming planning horizon. 
The solution – which will always have a large measure of 
uncertainty – then depends on what additional information 
can be supplied concerning the physical causes of the non-
stationarity. If, for example, (a) the non-stationarity in an 
existing flow record can be explained by increases in de-
forestation or urban development, (b) no non-stationarity 
of rainfall regime is detected, (c) sufficient data exists on 
the annual rate of deforestation and urban increase, and (d) 
upper limits to the percentage loss of forest and to urban 
area can be postulated, then it may be possible to obtain a 
statistical relation between flow, area of forest, and urban-
ised area. If this relation tends towards an asymptotic form 
as deforestation and urbanisation increase towards their 
upper limits, it is possible in theory to use this asymptotic 
form – together with a measure of year-to-year variability – 
to get an approximate idea of the probability that flow 
exceed X m3 s-1 once, twice... N times, during the coming 
20 (or 50...) years, for different values of X. 

The more complex case occurs where non-
stationarity in flow record is related not only to changing 
land-use, but also to changes in rainfall regime. At present, 
it seems that only very subjective methods are available 
(such as adopting the scenario of a sequence of extreme 
years of flow record, or selecting a particularly extreme 
sequence of rainfall years to be used as input to a rainfall-
runoff mode to obtain a derived flow sequence). More 
soundly-based methods must await a better understanding 
of the ways in which atmosphere, oceans and land interact 
to bring about changes in rainfall regime and other climate 
variables; progress in this direction is being achieved by a 
number of authors (Robertson & Mechoso, 1998, 2002; 
Berri et al., 2002). Some papers in the literature have ven-
tured to give forecasts of river flow for up to ten years 
ahead or even farther; however such forecasts are derived 
by extrapolating statistical fluctuations identified in flow 
records from past years, and time will tell whether the 
sophisticated statistical procedures now available justify 
forecasts so far into the future. 

THE CHALLENGES FOR THE FUTURE 

In the past, stochastic procedures for both predicting 
frequencies of extreme events and for forecasting flows in 
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Table 2. Serial correlation coefficients up to lag 4 of annual maximum, annual minimum and mean annual stages at Ladario, 
1900-94 (a) for sequences as a whole; (b) for sequences up to 1960 only, (c) for period after 1971 inclusive. 

Whole sequence Sequence to 1960 Sequence after 1971 
 (± 0.102)  (± 0.128)  (± 0.204) 

lag k rk lag k rk lag k rk 

Annual maximum stages 

1 0.416 1 0.139 1 0.639 
2 0.293 2 -0.074 2 0.419 
3 0.307 3 0.037 3 0.294 
4 0.164 4 -0.131 4 0.083 

Annual minimum stages 

1 0.637 1 0.364 1 0.757 
2 0.483 2 0.101 2 0.491 
3 0.237 3 0.115 3 0.225 
4 0.184 4 -0.060 4 -0.011 

Annual mean stage 

1 0.523 1 0.225 1 0.706 
2 0.374 2 -0.021 2 0.468 
3 0.338 3 0.037 3 0.272 
4 0.199 4 -0.110 4 0.096 

 
the immediate future have used models which have little or 
no physical basis, serving only to “let the data speak for 
themselves”. However, particularly where climate is chang-
ing, statements about future hydrological regimes will 
require knowledge of physical processes governing the 
long-term behaviour of the global atmosphere, the oceans, 
and the interactions between the two. Stochastic methods 
will then abandon their role as generators of pseudo-
random flow sequences in cases where serial correlation 
exists, and of fitting appropriate probability distributions 
where serial independence of data can be assumed. In-
stead, it will be necessary to combine statistical procedures 
for analysing the temporal and spatial structure of hydro-
logical and climatological variables with mathematical 
descriptions of atmospheric and oceanic behaviour, for 
testing hypotheses about mathematical model structure, for 
estimating the uncertainty in estimates of parameters in the 
mathematical models, and for quantifying the uncertainty 
in forecasts obtained from them in probabilistic terms. An 
example of how stochastic methods are extending into 
climate-related studies is given by Sharma (2000) and 
Sharma et al. (2000) who develop a framework for rainfall 
probabilistic forecasting for Australian conditions, using 
hydro-climatic information such as ENSO and other phe-
nomena. Increased spatial and temporal resolution of 
remote-sensed data, and the fact that increases in computer 
power allow continuous physical processes to be approxi-
mated using ever-finer discrete grids, will extend the need 
for efficient statistical analyses of large data sets. Thus it 
seems very probable that stochastic methods will no longer 
involve merely the computer generation of “synthetic” 

flow sequences from models fitted to past flow records, 
but will develop a much closer relationship with physical 
reality through its associations with atmospheric and ocean 
sciences. 
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Reexaminando a Hidrologia Estocástica 

RESUMO 

Este artigo apresenta um resumo dos métodos estocásticos utili-
zados na hidrologia aplicada nos últimos trinta anos, período no qual 
a potência e disponibilidade de computadores cresceu rapidamente, 
tornando possível utilizar métodos de modelação e simulação de séries 
temporais cuja aplicação anterior era muito limitada. O uso de méto-
dos estocásticos para a estimação das freqüências de ocorrência de 
eventos extremos no futuro (enchentes, secas) é baseado na suposição 
de que os processos hidrológicos tenham caráter estacionário, no sen-
tido de que os registros da precipitação e da vazão no passado possam 
ser empregados para estimar freqüências futuras. Mas, na presença de 
mudanças do clima ou no uso do solo, os processos hidrológicos tam-
bém mudam, e procedimentos padrões de hidrologia – por exemplo, a 
estimação de eventos anuais com período de retorno de T anos, e 
regionalização hidrológica – tornam-se inválidos. Na América do Sul 
ocorreram grandes mudanças no uso do solo nos últimos trinta anos, e 
estão se acumulando evidências de que o clima também está em tran-
sição. O artigo argumenta que, na presença de mudanças no clima ou 
uso do solo, a avaliação da freqüência futura de eventos extremos 
requer um melhor conhecimento dos processos físicos que controlam o 
comportamento da atmosfera e dos oceanos. 

Palavras-chave: hidrologia; estocástica; reexame. 


