EQUAÇÕES DE CHUVAS INTENSAS PARA SÃO LUÍS - MA

Jeferson da Costa¹; Jonair Mongin² & Antônio José de Brito³

RESUMO --- Este trabalho tem como objetivo primordial a obtenção de equações de chuvas intensas para a cidade de São Luís, no Estado do Maranhão, a partir da análise de registros pluviométricos verificados em cinco estações, sendo duas estações com dados diários e três estações com dados diários e horários. Em virtude dos dados horários disponibilizados estarem incompletos e com falhas, foi elaborada somente uma série histórica, com totais diários precipitados, abrangendo um período de 75 anos. O cálculo de chuvas de um dia em distintos tempos de recorrência foi realizado pelo método estatístico da distribuição da probabilidade da série natural, associada a distribuição probabilística teórica de Gumbel e Log-Pearson III. Para efeito de comparação da coerência dos dados calculados com a série selecionada, foram avaliados outros trabalhos já desenvolvidos, indicando um comportamento que merece investigações mais detalhadas.

ABSTRACT --- This paper has the main objective of obtaining intensity-duration-frequency rainfall relationships, for the Sao Luis city, Maranhao State, from data of rainfall intensity collected from five local recording rain gauges. The hour data was incomplete and with problems, so it was created 75 years of total daily maximum rainfall rates. The daily rainfall was calculated in different return periods, by the probability distribution statistic model with theory probabilistic distribution of Guambel and Log-Pearson III. The results were compared with others papers and indicate that the behavior has to be examine with more detail.

Palavras-chave: Equação de Chuvas, Chuvas Intensas.

¹⁾ Engenheiro Civil da Cooperativa Cooperaneo e Mestre em Tecnologia Ambiental e Recursos Hídricos pelo PTARH/UnB. QI 07, Bl. "S" Apt. 204, Guará I / DF, Brasil, 71.020-196. Tel.: 55-61-30374447. E-mail: jefcosta@gmail.com.

²⁾ Engenheiro Civil da Cooperativa Coopersaneo e Mestre em Hidrologia Aplicada pela Universidade Federal do Rio Grande do Sul

³⁾ Engenheiro Civil da Cooperativa Coopersaneo e Consultor em Saneamento Ambiental.

1 - INTRODUÇÃO

A precipitação máxima é entendida como a ocorrência extrema de uma chuva, com duração, distribuição temporal e espacial crítica para uma área ou bacia hidrográfica. Esta precipitação intensa pode atuar de forma nefasta, provocando a erosão dos solos, assoreamento de reservatórios e estuários, inundações em áreas rurais e populações urbanas, acarretando devastadoras conseqüências que muito bem se conhece.

Correlacionando-se intensidades ou altura de precipitação com a duração, verifica-se que quanto mais intensa for uma precipitação menor será sua duração. A relação cronológica das maiores precipitações para cada duração pode ser obtida de uma série de registros pluviográficos de tormentas intensas.

A disponibilidade de longas séries de precipitação é em geral muito mais frequente do que as de descargas líquidas. Desta forma, o estudo das chuvas intensas é um dos procedimentos metodológicos clássicos adotados em hidrologia para se conhecer a magnitude das cheias de projeto de uma bacia em um dado local de interesse.

Nesse contexto, o presente trabalho tem como objetivo principal a obtenção de equações de chuvas intensas para a cidade de São Luís, no Estado do Maranhão, a partir da análise de registros pluviométricos verificados em cinco estações, sendo duas estações com dados diários e três estações com dados diários e horários. Em virtude dos dados horários disponibilizados estarem incompletos e com falhas, foi elaborada somente uma série histórica, com totais diários precipitados, abrangendo um período de 75 anos.

O cálculo de chuvas de um dia em distintos tempos de recorrência foi realizado pelo método estatístico da distribuição da probabilidade da série natural, associada à distribuição probabilística teórica de Gumbel e Log-Pearson III. Para efeito de comparação da coerência dos dados calculados com a série selecionada, foram avaliados outros trabalhos já desenvolvidos.

2 – REFERÊNCIAS BIBLIOGRÁFICAS

Segundo relatou Back (2006), há diversos modelos de probabilidade empregados para a análise de chuvas extremas, sendo mais utilizados: a distribuição Log-Normal com dois parâmetros; a distribuição Log-Normal com três parâmetros; a distribuição Pearson tipo III; a distribuição Log-Pearson tipo III; a distribuição de extremos tipo I, também conhecida como distribuição de Gumbel (Kite, 1978). Chow (1964) apresentou um método de estimativa dos parâmetros da distribuição de Gumbel em função do tamanho da amostra e a distribuição, assim ajustada, é chamada de Gumbel-Chow.

A distribuição de Gumbel tem tido grande aplicação para o estudo de eventos extremos e é utilizada de forma generalizada nos trabalhos de chuvas intensas. Cruciani (1980) afirma que a distribuição de Gumbel é a mais apropriada para essas análises. Eltz et al. (1992) analisaram séries de chuvas máximas diárias de Santa Maria, com duração variando de dez minutos a 48 horas, por meio das distribuições Log-Normal com 2 parâmetros, Log-Normal com três parâmetros, extremos tipo I e II, Pearson tipo III e Log-Pearson tipo III. Os autores concluíram que a distribuição de Gumbel foi a única capaz de apresentar resultados satisfatórios. Pinto (1995) ajustou as distribuições Gumbel, Log-Normal com dois e três parâmetros, Pearson e Log-Pearson III para dados de vinte e nove estações pluviográficas do estado de Minas Gerais, com duração entre 5 minutos a 1440 minutos. Utilizando o teste Kolmogorov-Smirnov concluiu que as distribuições de Gumbel e Log-Normal a dois parâmetros foram as que melhor se ajustaram aos dados observados. Aron et al. (1987) estimaram alturas de chuva com duração de 1 a 24 horas e período de retorno de 1 a 100 anos em regiões da Pensilvânia (EUA), a partir de séries parciais por meio da distribuição Log-Pearson tipo III. Osborn et al. (1980) submeteram séries de valores máximos anuais de chuva às distribuições de Gumbel, Log-Normal, Pearson tipo III e Log-Pearson tipo III e observaram que a distribuição que melhor se ajustou aos dados de cada série disponível foi a distribuição de Gumbel. Com base nesses trabalhos muitos autores utilizam a distribuição de Gumbel em seus estudos assumindo a hipótese que os dados amostrais seguem a distribuição de Gumbel, sem testar essa hipótese ou procurar outra distribuição que poderia proporcionar um ajuste melhor.

O estudo de Back (2001), a partir de dados de chuvas máximas diárias de cem estações pluviométricas de Santa Catarina, verificou que a distribuição de Gumbel-Chow apresentou o melhor ajuste aos dados observados em 60 % das estações, e em 93 % das estações com menos de vinte anos de dados.

Conforme explicitou Sevruk e Geiger (1981), a definição da melhor distribuição de probabilidade pode ser feita com base empírica, usando técnicas visuais subjetivas ou testes estatísticos mais objetivos. O resultado dos testes depende, em parte, dos parâmetros do modelo e da posição de plotagem usada, observando-se que há controvérsias na utilização desses dados. Além disso, o teste pode mostrar que mais de uma distribuição é adequada.

3 – MATERIAIS E MÉTODOS

3.1 - Coleta dos Dados Pluviométricos Básicos

Inicialmente, foram identificadas as estações pluviométricas no local de interesse, detentoras de séries históricas de dados pluviográficos e pluviométricos horários e diários. Assim, foram verificadas as estações constantes do Quadro 1.

Código	Nome da Estação	Entidade Operadora	Latitude	Longitude	Data de Instalação
00244006	São Luis 82280	Instituto Nacional de Meteorologia- INMET	-02 32 00	-44 18 00	03/1910
00244007	São Luis	SUDENE	-02 32 00	-44 18 00	11/1910 a 07/1976
00244008	São Luis	SUDENE	-02 32 00	-44 18 00	12/1969
00244009	São Luis (Tirirical SBSL)	DEPV	-02 25 00	-44 14 00	11/1946
	Praia do Boqueirão –São Luís	CVRD	-02 33 22	-44 21 32	06/1985
	UEMA-PCD	LIEMA	-02.35	-44 12	09/2002

Quadro 1 – Estações Pluviométricas Existentes em São Luís.

Estas seis estações operam em locais próximo uma das outras, como pode ser observado pelas coordenadas geográficas do Quadro 01. As estações do Instituto Nacional de Meteorologia - INMET e da extinta Superintendência de Desenvolvimento do Nordeste - SUDENE apresentam as mesmas coordenadas, concluindo que elas estão instaladas bem próximas uma da outra. As duas estações da extinta SUDENE, na realidade, é uma só operando em períodos distintos. O INMET e a extinta SUDENE operaram praticamente a mesma estação e dispõem de duas séries idênticas de precipitações pluviométricas diárias.

Excetuando a estação da Diretoria Eletrônica de Proteção ao Vôo do Ministério da Aeronáutica - DEPV, conseguiram-se séries de dados das demais outras cinco estações. Nas estações do INMET e SUDENE, conseguiram-se séries de dados diários. As estações da Companhia Vale do Rio Doce - CVRD e da Universidade Estadual do Maranhão - UEMA representam séries de dados diários e horários.

3.2 - Estabelecimento das Séries Anuais

Os dados coletados apresentaram uma vasta série de dados diários e uma pequena série de dados horários. Assim, o critério adotado para o estabelecimento das séries históricas foi o valor anual, que consiste em identificar as séries de intensidades de precipitações com as máximas

observadas em cada ano, desprezando-se os demais valores, mesmo que esses sejam superiores às máximas dos demais anos. Dessa forma, foi possível construir uma série confiável com 75 anos de dados de precipitações máximas diárias anual.

Descrevem-se, a seguir, para cada estação, os procedimentos utilizados na seleção da série confiável com 75 anos de dados, utilizada como série básica para este estudo.

ESTAÇÃO DO INMET

Esta estação dispõe de uma série de dados de chuvas diárias com início em 01/06/1910 e término em 01/12/1998.

ESTAÇÃO DA SUDENE

Esta estação iniciou sua operação no mesmo período que a do INMET. Ela dispõe de uma série de dados de chuvas diárias com início em 01/05/1910 e término em 01/12/1988.

ESTAÇÃO DA CVRD

Esta estação iniciou sua operação oficialmente em 06/1985. Todavia somente passou a disponibilizar os dados de chuvas diárias a partir de 01/1997.

Esta estação dispõe ainda de arquivos de séries pluviográficas, com registros horários correspondente ao período 2001 a 2005, porém com diversas falhas, as quais justificaram a sua exclusão para o presente estudo.

ESTAÇÃO DA UEMA

Esta estação pluviográficas foi instalada em 09/2002. Os dados do ano 2002 não apresentaram confiança, em virtude de sua pequena significância.

Para o ano de 2003 foram observados os seguintes valores e datas: janeiro com 73,5 mm, fevereiro com 92,25 mm ocorrida no dia 02 e 179,5 mm, valor pouco confiável, ocorrido no dia 14. A experiência indica que houve uma falha no equipamento que acumulou registros anteriores. Esse valor não foi considerado. Em março com 133,0 mm, sendo uma valor aceitável ocorrido em 03/12. Os dados para o ano de 2004 não se apresentaram confiáveis, pois em janeiro o valor foi de 3,5mm, em fevereiro de 27,5 mm, em março com 0,0mm e abril com 71,5 mm. Os anos de 2005 e 2006 não apresentaram valores confiáveis.

ESTAÇÃO DA NEMRH

Foi disponibilizada uma série de 13 anos de chuvas diárias, sendo utilizado o ano de 2000 para integrar a série confiável.

O Quadro 2, a seguir, apresenta a série de precipitações pluviométricas máximas diária anual definida para o presente estudo.

Quadro 2 – Série de Precipitações Pluviométricas Máximas Diária Anual.

Ordem	Ano	INMET (mm) 244006	SUDENE (mm) 244007	CVRD P (mm)	CVRD PR (mm)	UEMA I Pr (mm)	UEMA II Pr(mm)	NEMRH P(mm)	Série Adotada (mm)
1	1910	107,5	102,5						102,5
	1911								
2	1912	70,0	73,6						73,6
3	1913	65,5	65,5						65,5
4	1914	88,2	88,2						88,2
5	1915	72,0	72,0						72,0
6	1916	91,6	91,6						91,6
7	1917	106,2	106,2						106,2
8	1918	128,6	128,6						128,6
9	1919	90,4	90,4						90,4
10	1920	110,6	110,6						110,6
11	1921	105,1	105,1						105,1
12	1922	73,4	73,4						73,4
13	1923	92,1	92,1						100,4
14	1924	100,4	100,4						100,4
15	1925	73,4	73,4						73,4
16	1926	128,2	128,2						128,2
17	1927	87,5	87,5						87,5
18	1928	99,0	99,0						99,0
19	1929	100,0	99,9						99,9
20	1930	98,4	94,4						94,4
21	1931	102,8	102,8						102,8
22	1932	81,0	81,0						81,0
23	1933	79,3	79,3						79,3
24	1934	116,0	116,0						116,0
25	1935	69,6	114,2						114,2
26	1936	70,6	70,6						70,6
27	1937	122,2	122,2						122,2
28	1938	90,2	92,2						92,2
29	1939	98,8	98,8						98,8
30	1940	125,0	125,0						125,0
31	1941	142,1	142,1						142,1
32	1942	72,3	72,3						72,3
33	1943	87,0	87,0						87,0
34	1944	82,4	82,4						82,4

Quadro 2 – Série de Precipitações Pluviométricas Máximas Diária Anual (Continuação 1).

Ordem	Ano	INMET (Pmm) 244006	SUDENE (Pmm) 244007	CVRD P (mm)	CVRD PR (mm)	UEMA I Pr (mm)	UEMA II Pr(mm)	NEMRH P(mm)	Série Adotada (mm)
	1945								
	1946								
	1947								
	1948								
	1949								
	1950								
	1951								
	1952								
	1953								
	1954								
	1955								
	1956								
	1957								
	1958								
	1959								
	1960								
	1961								
35	1962	102,5							102,5
	1963								
	1964								
	1965								
36	1966		84,0						84,0
37	1967		60,5						60,5
38	1968		70,5						70,5
39	1969		110,2						110,2
40	1970		108,0						108,0
41	1971	103,6	78,2						78,2
42	1972	61,5	85,6						85,6
43	1973	49,5	97,4						97,4
44	1974	177,2	165,0						165,0
45	1975	78,3	118,8						118,8
46	1976	130,5	104,6						104,6
47	1977	103,4	103,4						103,4
48	1978	85,9	85,9						85,9
49	1979	129,5	129,5						129,5
50	1980	90,4	99,2						99,2

Quadro 2 – Série de Precipitações Pluviométricas Máximas Diária Anual (Continuação 2).

Ordem	Ano	INMET (Pmm) 244006	SUDENE (Pmm) 244007	CVRD P (mm)	CVRD Pr(mm)	UEMA I Pr (mm)	UEMA II Pr(mm)	NEMRH P(mm)	Série Adotada (mm)
51	1981	126,5	126,5						126,5
52	1982	79,0	79,0						79,0
53	1983	120,0	120,0						120,0
54	1984	155,2	155,2						155,2
55	1985	161,4	161,4						161,4
56	1986	108,9	108,9						108,9
57	1987	122,2	122,2						122,2
58	1988	109,7	109,7						109,7
59	1989	130,3							130,3
60	1990	149,8							149,8
61	1991	152,5							152,5
62	1992	126,5						95,3	126,5
63	1993	120,8						89,2	120,8
64	1994	134,4						125,6	134,4
65	1995	91,5						99,3	91,5
66	1996	124,3						74,3	124,3
67	1997	71,3		111,0				89,9	111,0
68	1998	80,3		190,0				34,2	190,0
69	1999			74,0				72,1	74,0
70	2000							108,5	108,5
71	2001			154,0	56,1			103,9	154,0
	2002			71,5	71,5		não aproveitada	70,0	
72	2003			68,5	64,0	133,0	92,5	92,3	133,0
73	2004					71,5	82,5		82,5
74	2005						90,5		90,5
75	2006			-			78,5		78,5

3.3 – Análise Estatística das Intensidades de Precipitações na Distribuição de Probabilidade de Gumbel e Log Pearson Tipo III

O cálculo das chuvas de um dia nos tempos de recorrência de 5, 10, 25, 50 e 100 anos, denominada chuvas de projeto, foi feito pelo método estatístico da distribuição de probabilidade da série natural, associada a distribuição probabilística teórica de Gumbel e Log Pearson Tipo III. Assim, ordenou-se a série confiável de chuvas máximas diárias anuais em ordem decrescente. Dessa forma, calculou-se a probabilidade (P) de cada evento ser igualado ou ultrapassado segundo o método de Kimbal.

A formulação das equações da distribuição probabilística utilizada é apresentada a seguir.

3.3.1 Equação de Probabilidade de o Evento Extremo ser Igualado ou Superado

$$P = \frac{(2n-1)}{2m} \cdot 100\tag{01}$$

Em que: P (adimensional); n (ordem); m (número total de eventos).

3.3.2 Equação de Cálculo do Tempo de Recorrência

$$Tr = \frac{1}{P} \cdot 100 \tag{02}$$

Em que: Tr (anos); P (adimensional); m (número total de eventos).

3.3.3 Equação da Chuva de Projeto

$$Htr = Hmd + \sigma K \tag{03}$$

Em que: Htr (anos); Hmd (mm); σ (mm); K (adimensional).

3.3.4 Equação de Função Densidade de Probabilidade

$$f(x) = \frac{(x - x_0)^{\gamma - 1} e^{\frac{(x - x_0)_0}{\beta}}}{\beta^{\gamma} \Gamma(\gamma)}$$

$$(04)$$

Em que: f, β , γ , x_0 e Γ (adimensional).

3.3.5 Equação da Função γ

$$f_{x}(x) = \frac{1}{\left[\beta\right]x\Gamma(\alpha)} \left(\frac{\log x - \xi}{\beta}\right) e^{\left(-\frac{\log x - \xi}{\beta}\right)}$$

$$\tag{05}$$

Em que: Para $\alpha > 0 \Rightarrow -\infty < \beta < 1$; $x \ge e^{\xi}$ para $\beta > 0$

3.3.6 Equação da Função Cumulativa de Probabilidade

$$f_x(x) = \int_{e^{\xi}}^x f(u)du \tag{06}$$

3.3.7 Equação da Função Cumulativa de Probabilidade

$$Y = \frac{\log X - \xi}{\beta} \tag{07}$$

3.3.8 Equação da Função Cumulativa de Probabilidade

$$f_{y}(y) = \frac{1}{\Gamma(\alpha)} y^{y^{\alpha-1}} e^{-y}$$

$$\tag{08}$$

3.3.9 Equação da Função Densidade de Probabilidade da Distribuição Gama

$$f_x(x) = \int_{e^{\xi}}^x f(u)du \tag{09}$$

A aplicação dos dados pluviométricos selecionados às equações anteriores resultaram nos valores constantes do Quadro 3, sendo o resumo do processamento estatístico da série adotada.

Quadro 3 – Tratamento Estatístico da Série de Precipitações Pluviométricas Máximas – 1910 a 2006.

Ordem	Ano	S. Adotada (mm)	S. Ordenada (mm)	LogP (mm)	Probabilidade	Tr(Anos)
1	1910	102,5	190,0	2,27875	0,7	150,00
2	1912	73,6	165,0	2,21748	2,0	50,00
3	1913	65,5	161,4	2,20790	3,3	30,00
4	1914	88,2	155,2	2,19089	4,7	21,43
5	1915	72,0	154,0	2,18752	6,0	16,67
6	1916	91,6	152,5	2,18327	7,3	13,64
7	1917	106,2	149,8	2,17551	8,7	11,54
8	1918	128,6	142,1	2,15259	10,0	10,00
9	1919	90,4	134,4	2,12840	11,3	8,82
10	1920	110,6	133,0	2,12385	12,7	7,89
11	1921	105,1	130,3	2,11494	14,0	7,14
12	1922	73,4	129,5	2,11227	15,3	6,52
13	1923	92,1	128,6	2,10924	16,7	6,00
14	1924	100,4	128,2	2,10789	18,0	5,56
15	1925	73,4	126,5	2,10209	19,3	5,17
16	1926	128,2	126,5	2,10209	20,7	4,84
17	1927	87,5	125,0	2,09691	22,0	4,55
18	1928	99,0	124,3	2,09447	23,3	4,29
19	1929	99,9	122,2	2,08707	24,7	4,05
20	1930	94,4	122,2	2,08707	26,0	3,85
21	1931	102,8	120,8	2,08207	27,3	3,66
22	1932	81,0	120,0	2,07918	28,7	3,49
23	1933	79,3	118,8	2,07482	30,0	3,33
24	1934	116,0	116,0	2,06446	31,3	3,19
25	1935	114,2	114,2	2,05767	32,7	3,06
26	1936	70,6	111,0	2,04532	34,0	2,94
27	1937	122,2	110,6	2,04376	35,3	2,83
28	1938	92,2	110,2	2,04218	36,7	2,73
29	1939	98,8	109,7	2,04021	38,0	2,63
30	1940	125,0	108,9	2,03703	39,3	2,54
31	1941	142,1	108,5	2,03543	40,7	2,46
32	1942	72,3	108,0	2,03342	42,0	2,38
33	1943	87,0	106,2	2,02612	43,3	2,31
34	1944	82,4	105,1	2,02160	44,7	2,24
35	1962	102,5	104,6	2,01953	46,0	2,17

36	1966	84,0	103,4	2,01452	47,3	2,11
37	1967	60,5	102,8	2,01199	48,7	2,05
38	1968	70,5	102,5	2,01072	50,0	2,00
39	1969	110,2	102,5	2,01072	51,3	1,95
40	1970	108,0	100,4	2,00173	52,7	1,90

Quadro 3 – Tratamento Estatístico da Série de Precipitações Pluviométricas Máximas – 1910 a 2006. (Continuação).

Ordem	Ano	S. Adotada (mm)	S. Ordenada (mm)	LogP (mm)	Probabilidade	Tr(Anos)
41	1971	78,2	99,9	1,99957	54,0	1,85
42	1972	85,6	99,2	1,99651	55,3	1,81
43	1973	97,4	99,0	1,99564	56,7	1,76
44	1974	165,0	98,8	1,99476	58,0	1,72
45	1975	118,8	97,4	1,98856	59,3	1,69
46	1976	104,6	94,4	1,97497	60,7	1,65
47	1977	103,4	92,2	1,96473	62,0	1,61
48	1978	85,9	92,1	1,96426	63,3	1,58
49	1979	129,5	91,6	1,96190	64,7	1,55
50	1980	99,2	91,5	1,96142	66,0	1,52
51	1981	126,5	90,5	1,95665	67,3	1,49
52	1982	79,0	90,4	1,95617	68,7	1,46
53	1983	120,0	88,2	1,94547	70,0	1,43
54	1984	155,2	87,5	1,94201	71,3	1,40
55	1985	161,4	87,0	1,93952	72,7	1,38
56	1986	108,9	85,9	1,93399	74,0	1,35
57	1987	122,2	85,6	1,93247	75,3	1,33
58	1988	109,7	84,0	1,92428	76,7	1,30
59	1989	130,3	82,5	1,91645	78,0	1,28
60	1990	149,8	82,4	1,91593	79,3	1,26
61	1991	152,5	81,0	1,90849	80,7	1,24
62	1992	126,5	79,3	1,89927	82,0	1,22
63	1993	120,8	79,0	1,89763	83,3	1,20
64	1994	134,4	78,5	1,89487	84,7	1,18
65	1995	91,5	78,2	1,89321	86,0	1,16
66	1996	124,3	74,0	1,86923	87,3	1,15
67	1997	111,0	73,6	1,86688	88,7	1,13
68	1998	190,0	73,4	1,86570	90,0	1,11
69	1999	74,0	73,4	1,86570	91,3	1,09
70	2000	108,5	72,3	1,85914	92,7	1,08
71	2001	154,0	72,0	1,85733	94,0	1,06
72	2003	133,0	70,6	1,84880	95,3	1,05
73	2004	82,5	70,5	1,84819	96,7	1,03
74	2005	90,5	65,5	1,81624	98,0	1,02
75	2006	78,5	60,5	1,78176	99,3	1,01

3.4 – Análise Comparativa das Chuvas Calculadas com Outros Trabalhos Existentes

Os resultados encontrados pela metodologia anterior foram comparados com outros trabalhos existentes, sendo Pfafstetter (1957), TCBR (2005) e UFV (2007).

3.4.1 Chuvas Intensas no Brasil

Em dezembro de 1957 o Engenheiro do extinto DNOS Dr. Otto Pfafstetter publicou o memorável trabalho pioneiro intitulado CHUVAS INTENSAS NO BRASIL. Trabalhando com dados pluviográficos determinou a equação IDF para 98 diferentes localidades do Brasil e também para São Luis, onde utilizou uma série pluviográfica de 26,67 anos correspondente ao período de 1911 a 1944. Este posto se constitui no mesmo utilizado neste trabalho, onde se conseguiu selecionar uma série de precipitações pluviométricas máximas diária com 63 anos de dados correspondente ao período de 1911 a 1998.

Definiu a precipitação máxima (P) em mm, pela seguinte equação empírica:

Equação de Precipitação Máxima

$$P = T^{\alpha + \frac{\beta}{T^{\gamma}}} * \left[at + b * \log(1 + ct) \right]$$

$$\tag{10}$$

Em que: P (mm); T (anos), t (horas) e γ, a, b, c (adimensionais para cada posto).

O Fator de Probabilidade (K) é definido como:

Equação de Fator de Probabilidade

$$K = T^{\alpha + \frac{\beta}{T^{\gamma}}} \tag{11}$$

Esse fator define a forma da curva a ser ajustada à representação gráfica das precipitações em função do tempo de recorrência. Os valores α e β dependem da duração da precipitação e γ é equivalente a 0,25, sendo igual para todos os postos estudados.

O fator restante da equação (10) calcula o valor da precipitação em mm, para o tempo de recorrência de 1 ano, porque K se torna igual a unidade para esse valor. Assim, esse fator permite calcular a precipitação para outros tempos de recorrência.

No Quadro 4, apresentam-se os valores válidos para todos os 98 postos estudados para duração entre 5min e 6 dias. No Quadro 5 apresentam-se os valores de coeficientes em função da duração para todos os postos estudados.

Desta forma, os parâmetros da equação IDF para a cidade de São Luis, para um tempo de 24 horas de duração, segundo Pfafstetter, são os seguintes valores:

$$\gamma = 0.25$$
; $\alpha = 0.17$; $\beta = 0.08$; $\alpha = 0.4$; $\alpha = 0.$

Quadro 4 – Valores de α

Duração	5min	15min	30min	1h	2h	4h	8h	14h	24h	48h	3d	4d	6d
α	0,108	0,122	0,138	0,156	0,166	0,174	0,176	0,174	0,170	0,166	0,160	0,156	0,152

Quadro 5 – Valores de β , a, b, c

D . /		Valore	s de β		a	b	c
Postos	5min	15min	30min	1h a 6d			
Aracaju SE	0,00	0,04	0,08	0,20	0,6	24	20
Barra do Corda MA	-0,08	0,04	0,08	0,12	0,1	28	20
Belém PA	-0,04	0,00	0,00	0,04	0,4	31	20
BH MG	0,12	0,12	0,12	0,04	0,6	26	20
Catalão GO	0,04	0,04	0,04	0,04	0,5	27	20
Caxias do Sul RS	0,00	0,08	0,08	0,08	0,5	23	20
Cuiabá MT	0,08	0,08	0,08	0,04	0,1	30	20
Curitiba PR	0,16	0,16	0,16	0,08	0,2	25	20
Florianópolis SC	-0,04	0,12	0,20	0,20	0,3	33	10
Formosa GO	0,08	0,08	0,08	0,04	0,5	27	20
Fortaleza CE	0,04	0,04	0,08	0,08	0,2	36	20
Goiânia GO	0,08	0,08	0,08	0,12	0,2	30	20
Rio de Janeiro RJ	-0,04	0,12	0,12	0,20	0,0	35	10
João Pessoa PB	0,00	0,00	0,04	0,08	0,6	33	10
Maceió AL	0,00	0,04	0,08	0,20	0,5	29	10
Manaus AM	0,04	0,00	0,00	0,04	0,1	33	20
Natal RN	-0,08	0,00	0,08	0,12	0,7	23	20
Niterói RJ	0,08	0,12	0,12	0,12	0,2	27	20
Paracatu MG	-0,04	0,00	0,04	0,12	1,2	45	10
Paranaguá PR	0,04	0,12	0,12	0,16	0,3	42	10
Porto Alegre RS	0,00	0,08	0,08	0,08	0,4	22	20
Porto Velho RO	0,00	0,00	0,00	0,04	0,3	35	20
Rio Branco AC	-0,08	0,00	0,04	0,08	0,3	31	20
Salvador BA	-0,04	0,08	0,08	0,12	0,6	33	10
São Luis MA	-0,08	0,00	0,00	0,08	0,4	42	10
São Carlos SP	-0,04	0,08	0,08	0,12	0,4	29	20
Uruguaiana RS	-0,04	0,08	0,08	0,12	0,2	38	10

3.4.2 Estudos da Empresa TCBR (2005)

Neste trabalho intitulado PROGRAMA DE RECUPERAÇÃO AMBIENTAL E MELHORIA DA QUALIDADE DE VIDA DA BACIA DO RIO BACANGA - Estudos Hidrológicos - Tomo I e II, Versão Final, datado de setembro de 2005. A definição da equação IDF para a cidade de São Luis foi feita utilizando uma série temporal muito curta, de apenas seis anos de dados. 1997 a 1999 e 2001 a 2003.

3.4.3 Estudos da Universidade Federal de Viçosa - UFV (2007)

A UFV, por meio do grupo de Pesquisa em Recursos Hídricos do Departamento de Engenharia Agrícola, desenvolveu e disponibiliza na internet um sistema computacional denominado HIDROS, contendo entre outros aplicativos o PLUVIO 2.1 CHUVAS INTENSA PARA O BRASIL.

Esse programa utiliza a equação IDF na seguinte forma:

Equação de Precipitação Máxima

$$i = \frac{K * T^a}{(t+b)^c} \tag{12}$$

Em que: i (mm/h); T (anos), t (minutos) e K, a, b, c (adimensionais relativos à localidade).

Este aplicativo calcula os parâmetros da IDF para diferentes localidades brasileiras e também para a cidade de São Luis do Maranhão. Essa localidade encontra-se nas seguintes coordenadas geográficas: 02° 32' na Latitude Sul e 44° 17' de Longitude Oeste. Tais coordenadas são idênticas aos do posto do INMET, utilizado neste trabalho.

Dessa forma, os parâmetros encontrados são: K = 1.131,57; a = 0,18; b = 24 e c = 0,74.

3.5 - Processamento de Dados para a Análise Comparativa

Para efeito de comparação, extraiu-se da série maior de 75 anos, uma série com 34 anos de dados do posto INMET, correspondente ao mesmo período utilizado por Pfafstetter (1957) em seu trabalho (1911 a 1944). Assim, calcularam-se as chuvas de projeto de um dia pelo método Gumbel para essa série reduzida e plotaram-se os resultados com as chuvas de um dia calculados com a metodologia de cada trabalho anteriormente descritos. O Quadro 6 apresenta o tratamento estatístico da série de precipitações pluviométricas máximas diária anual para a série de 1910 a 1944.

Quadro 6 – Tratamento Estatístico da Série de Precipitações – 1910 a 1944

Ordem	Ano	Série Adotada(mm)	Série Ordenada (mm)	LogP(mm)	Probabilidade	Tr(Anos)
1	1910	102,5	142,1	2,15259	1,5	68,00
2	1912	73,6	128,6	2,10924	4,4	22,67
3	1913	65,5	128,2	2,10789	7,4	13,60
4	1914	88,2	125,0	2,09691	10,3	9,71
5	1915	72,0	122,2	2,08707	13,2	7,56
6	1916	91,6	116,0	2,06446	16,2	6,18
7	1917	106,2	114,2	2,05767	19,1	5,23
8	1918	128,6	110,6	2,04376	22,1	4,53
9	1919	90,4	106,2	2,02612	25,0	4,00
10	1920	110,6	105,1	2,02160	27,9	3,58
11	1921	105,1	102,8	2,01199	30,9	3,24
12	1922	73,4	102,5	2,01072	33,8	2,96
13	1923	92,1	100,4	2,00173	36,8	2,72
14	1924	100,4	99,9	1,99957	39,7	2,52
15	1925	73,4	99,0	1,99564	42,6	2,34
16	1926	128,2	98,8	1,99476	45,6	2,19
17	1927	87,5	94,4	1,97497	48,5	2,06
18	1928	99,0	92,2	1,96473	51,5	1,94
19	1929	99,9	92,1	1,96426	54,4	1,84

20	1930	94,4	91,6	1,96190	57,4	1,74
21	1931	102,8	90,4	1,95617	60,3	1,66
22	1932	81,0	88,2	1,94547	63,2	1,58
23	1933	79,3	87,5	1,94201	66,2	1,51
24	1934	116,0	87,0	1,93952	69,1	1,45
25	1935	114,2	82,4	1,91593	72,1	1,39
26	1936	70,6	81,0	1,90849	75,0	1,33
27	1937	122,2	79,3	1,89927	77,9	1,28
28	1938	92,2	73,6	1,86688	80,9	1,24
29	1939	98,8	73,4	1,86570	83,8	1,19
30	1940	125,0	73,4	1,86570	86,8	1,15
31	1941	142,1	72,3	1,85914	89,7	1,11
32	1942	72,3	72,0	1,85733	92,6	1,08
33	1943	87,0	70,6	1,84880	95,6	1,05
34	1944	82,4	65,5	1,81624	98,5	1,01

4 – RESULTADOS E DISCUSSÕES

4.1 – Resultados da Distribuição de Probabilidade para a Série Completa (1910-2006)

Nos Quadros 7 e 8, apresentam-se os parâmetros estatísticos e as chuvas de projeto de um dia, nos tempos de recorrência de 5; 10; 25; 50 e 100 anos da série natural e das distribuições de Gumbel e Log Pearson Tipo III, respectivamente, para a série completa de 1910 a 2006.

Quadro 7 – Parâmetros Estatísticos da Série Natural – 1910 a 2006

Parâmetros	SÉRIE Natural	LOG(Série)	N° Eventos
MÉDIA	105,42	2,01	m=75
DESVIO	26,45	0,11	
ASSIMETRIA	0,75	0,17	

Quadro 8 – Chuvas de Projeto de Um Dia – 1910 a 2006

PLOT POSITION		Р	DISTRIBUIÇÃO		
1-(Fx)	Tr(Anos	Tr	Série natural (mm)	Gumbel (mm)	Log Pearson III (mm)
0,2000	5	P5	121,7	126,8	125,5
0,1000	10	P10	139,6	143,7	140,3
0,0400	25	P25	163,2	165,0	158,3
0,0200	50	P50	181,1	178,2	171,2
0,0100	100	P100	199,0	195,8	184,0

As Figuras 1 a 2 apresentam a distribuição de Gumbel e Log Pearson Tipo III, respectivamente, para a série de 1910 a 2006.

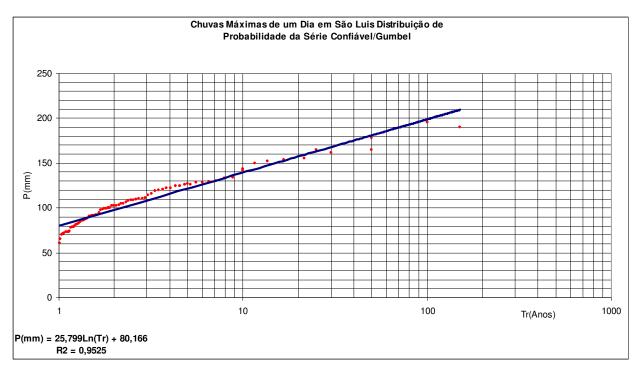


Figura 1 – Distribuição de Gumbel – 1910 a 2006.



Figura 2 – Distribuição de Log Pearson Tipo III – 1910 a 2006.

A distribuição de Gumbel apresentou o coeficiente de correlação R2 = 0,9525, sendo ligeiramente maior que a Log Pearson Tipo III, ou seja, R2 = 0,9463. Assim, a distribuição de Gumbel apresentou, dessa forma, melhor aderência aos dados da série natural, sendo, portanto, mais representativa.

4.2 – Resultados da Distribuição de Probabilidade para a Série Reduzida (1910-1944)

Inicialmente, nos Quadros 9 e 10, apresentam-se os parâmetros estatísticos e as chuvas de projeto de um dia, nos tempos de recorrência de 5; 10; 25; 50 e 100 anos da série natural e das distribuições estatísticas para a série reduzida de 1910 a 1944.

Quadro 9 – Parâmetros Estatísticos da Série Natural – 1910 a 1944

Parâmetros	SÉRIE Natural	LOG(Série)	Nº Eventos
MÉDIA	96,13	1,97	m=34
DESVIO	19,26	0,09	
ASSIMETRIA	0,47	0,09	

Quadro 10 – Chuvas de Projeto de Um Dia – 1910 a 1944

PLOT POSITION		D	DISTRIBUIÇÃO		
1-(Fx)	Tr(Anos)	P Tr	Série natural (mm)	Gumbel (mm)	Log Pearson III (mm)
0,2000	5	P5	108,4	112,6	111,3
0,1000	10	P10	121,8	125,4	121,9
0,0400	25	P25	139,6	141,6	134,4
0,0200	50	P50	153,0	153,7	143,3
0,0100	100	P100	166,4	165,6	151,9

4.3 – Análise Comparativa das Chuvas Calculadas com outras Metodologias Existentes

Os Quadros 11 e 12 apresentam as alturas pluviométricas para os tempos de recorrência de 5, 10, 20, 50 e 100 anos, para as distintas metodologias

Quadro 11 – Alturas Precipitadas Comparativas – Chuva de Um Dia – 1910 a 2006.

	Chuvas de Projeto Metodologias				
Tr(Anos)	Atual Estudo (mm)	Pfafstetter (mm)	TCBR (mm)	UFV (mm)	
100	184,0	269,5	287,0	282,7	
50	171,2	239,8	256,0	249,6	
25	158,3	212,6	225,0	220,3	
10	140,3	179,9	183,0	186,8	
5	125,5	157,1	149,0	164,9	

Quadro 12 – Alturas Precipitadas Comparativas – Chuva de Um Dia – 1910 a 1944.

	Chuvas de Projeto Metodologias				
Tr(Anos)	Atual Estudo (mm)	Pfafstetter (mm)	TCBR (mm)	UFV (mm)	
100	165,6	269,5	287,0	282,7	
50	153,7	239,8	256,0	249,6	
25	141,6	212,6	225,0	220,3	
10	125,4	179,9	183,0	186,8	
5	112,6	157,1	149,0	164,9	

As Figuras 3 e 4 apresentam a distribuição de probabilidade para todas as metodologias estudadas, para a série completa (1910 a 2006) e para a série reduzida (1910 a 1944), respectivamente.

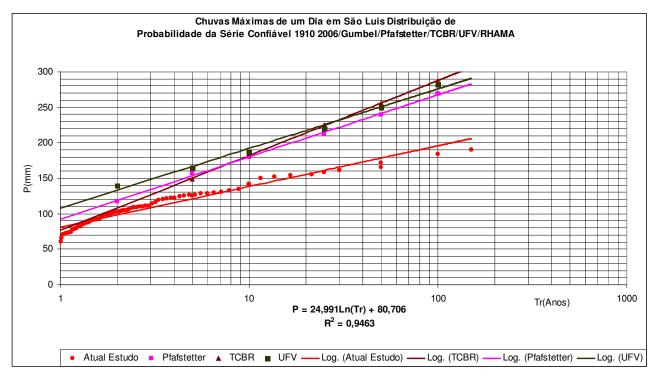


Figura 3 – Distribuição de Probabilidade no Período 1910 a 2006.

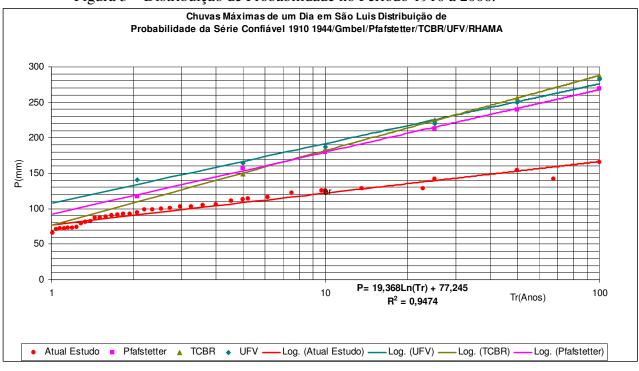


Figura 4 – Distribuição de Probabilidade no Período 1910 a 1944.

5 – CONCLUSÕES

Apesar de se ter abordado seis estações pluviométricas, as séries básicas utilizadas foram provenientes de somente três estações, sendo duas séries pluviométricas e uma série pluviográfica constante do trabalho de Pfafstetter (1957). O tratamento dos dados evidenciou a existência de grandes diferenças nos resultados (Figuras 3 e 4).

A série pluviométrica da TCBR, muito pequena, somente 6 anos, contém muitas falhas e poderia estar afetando os resultados para valores mais elevados (Figuras 3 e 4).

O trabalho da UFV constitui-se em um programa definido, e devido a exigüidade do tempo e objetivos do trabalho, não permitiu uma análise mais acurada sobre a temporalidade da série básica nele utilizada. Todavia, tudo leva a supor que foi utilizada os mesmos dados pluviográficos de Pfafstetter (1957). Ela se comportou fornecendo valores mais altos que a do Pfafstetter.

A série trabalhada neste estudo, apesar de ser uma série temporal bastante longa (75 anos de dados) e apresentar um bom ajuste (coeficientes de determinação acima de 95%), comportou-se fornecendo valores de chuvas de projeto muito abaixo da série de Pfafstetter (1957). Não se conseguiu explicar o porquê desta anomalia. Quando se trabalhou com uma série menor (34 anos), com os anos coincidentes com o trabalho de Pfafstetter, os resultados foram menores ainda (Figuras 3 e 4). Esse comportamento nos leva a supor a existência de um erro sistemático inerente ao pluviômetro que não afetou o pluviógrafo.

Levando em consideração que o trabalho de Pfafstetter (1957) trabalhou diretamente em dezenas de anos de gráficos pluviográficos de papel, oriundo de aparelhos registradores, pode-se inferir que esta série pluviográfica teve menos interferência humana que a série pluviométrica. A série pluviométrica é submetida a duas leituras diárias 7h e 17h, enquanto o gráfico do pluviômetro tem-se que a interferência humana é apenas semanal, bem menor. Levando a concluir que a probabilidade da série pluviográfica utilizada pelo Pfafstetter deve estar mais próxima da realidade, que a série pluviométrica utilizada neste estudo. Dessa forma, recomenda-se a utilização da equação IDF contida no trabalho de Pfafstetter (1957).

Pesquisas posteriores poderão ser conduzidas para averiguar melhor esse comportamento, podendo até ser justificado em virtude de algum comportamento no regime de chuvas da região da cidade de São Luís.

AGRADECIMENTOS

Agradecemos a disponibilização de dados de todas as entidades responsáveis pela operação de estações pluviométricas e pluviográficas e, em especial, pela Universidade Estadual do Maranhão,

que, com a dedicação de seus técnicos, tem proporcionado um maravilhoso avanço na obtenção de dados meteorológicos para a região.

BIBLIOGRAFIA

ARON, G. et al. *Regional rainfall intensity duration frequency curves for Pennsylvania*. Water. Resource. Bull., Urban, v. 23, p. 479-85, 1987.

BACK, A. J. Seleção *de distribuição de probabilidades para chuvas diárias extremas do Estado de Santa Catarina*. Rev. Bras. Meteorol., Rio de Janeiro, v. 16, n. 2, p. 211-222, 2001.

BACK, A. J. (2006). *Relações Intensidade-Duração-Freqüência de chuvas intensas de Chapecó, Estado de Santa Catarina*. Acta Scientarium Agronomy. Maringá, v. 28, n. 4, p. 575-581, Oct./Dec., 2006. Editora da Universidade Estadual de Maringá/PR.

CHOW, V. Handbook of applied hydrology. New York: McGraw-Hill, 1964.

CRUCIANI, D.E. A drenagem na agricultura. São Paulo: Nobel, 1980.

ELTZ, F.L. et al. Período de retorno de chuvas em Santa Maria, RS. Rev. Bras. Cienc. Solo, Campinas, v. 16, p. 265- 269, 1992.

KITE, G.W. Frequency and risk analyses in hydrology. Colorado: Water Resources publications, 1978.

OSBORN, H.B. et al. Rainfall watershed relationships for southwestern thunderstorms. Trans. Asae, St Joseph, v. 23, p. 82-87, 1980.

PFAFSTETTER, O. Chuvas Intensas no Brasil. Rio de Janeiro: DNOS. 419 p. 1957.

PINTO, F.A. *Chuvas intensas no Estado de Minas Gerais: análises e modelos*. Tese (Doutorado em Engenharia Agrícola)-Universidade Federal de Viçosa, Viçosa, 1995.

SEVRUK, B.; GEIGER, H. Selection of distribution types for extremes of precipitation. Geneva: World Meteorological Organization Report, n. 15, 1981. 65p.

UFV. (2007). Universidade Federal de Viçosa, Departamento de Engenharia Agrícola, Grupo de Pesquisa em Recursos Hídricos. Obtido em http://www.ufv.br/dea/gprh/softwares.htm, em maio de 2007.